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INVISCID HYPERSONIC FILOW OVER A BLUNT BODY WITH
HIGH RATES OF MASS AND HEAT TRANSFER
By E. Dale Martin

Ames Research Center
SUMMARY

A study of steady hypersonic flow over a blunt body with a very high rate
of continuous mass transfer from the body surface, with heat conduction, is
presented. An approximate analysis is made of the inviscid flow over a sphere
with large mass flux. Lighthill's well-known constant-density inviscid blunt-
body flow solution was previously extended by Vinokur and Sanders and by
Cresci and Libby to include inviscid flow at a high rate out of the body sur-
face. The present analysis further extends Cresci and Libby's solution to
include the effects of the boundary shock wave, a thin viscous region domi-
nated by viscous-compressive stresses (rather than viscous shear) and the
associlated heat conduction in the gas adjacent to the body surface. These
effects are important to consider when there is a significant source of trans-
lational nonequilibrium at the body surface (such as absorption of intense
radiation and the accompanying large heat conduction).

INTRODUCTION

Hypersonic flow over a blunt body with a high rate of mass transfer has
been studied by a number of investigators. For example, in an early investi-
gation, Hoshizaki (ref. 1) made numerical calculations from the incompressible
Navier-Stokes equations to determine the effects of mass transfer on the heat-
transfer rate to blunt bodies. Vinokur and Sanders (ref. 2) extended the
constant-density inviscid solution of Lighthill (ref. 3) to include mass
injection from the body. The calculations of reference 2 were made for the
very special case wherein the injection is vectored so that the flow from the
body is irrotational. Libby (ref. 4), Cresci and Libby (ref. 5), and Fox and
Libby (ref. 6) also studied blunt-body flows with large mass-injection rates.
Of particular interest here is the appendix of reference 5, which contains a
solution to the inviscid, incompressible-flow equations that is equivalent
(except for the vectored injection) to that given in reference 2. The invis-
cid solutions of Vinokur and Sanders and of Cresci and Libby are further
discussed in references 7T and 8.

The magnitude of the mass flux from the body determines the nature of the
interaction with the outer flow and the nature of the effects on the body
motion and heating. When the mass flux is small enough, the outer flow is
not affected appreciably, and boundary-layer theory is applicable if the
Reynolds number p2V2do/p2 is large. (Notation is defined in appendix A.)

It will be shown in a later section that the bulk of the flow in the inner



region is essentially inviscid if the mass flux (or, more appropriately, Rep)
is large; that a thick viscous region exists only for moderate values of mass
flux; and that a boundary layer exists only for small mass flux (small Reb)-

A thin region of flow dominated by viscous-compressive stresses (Trr) and
heat conduction is expected to occur, in general, at a boundary surface from
which a gas flows at a rapid rate with significant heat conduction at the sur-
face (e.g., because of absorption of intense radiation there), as discussed
in references 9 and 10. Thus, even though the bulk of the flow from the body
is inviscid, a thin layer immediately adjacent to the body generally can have
significant viscous effects which are quite different from the viscous-
shearing effects (e.g., significant Tr@) that characterize a boundary layer.
In this region, designated as a boundary shock wave, the density, temperature,
pressure, and velocity may vary rapidly. In the inviscid limit, the boundary
shock wave is of vanishing thickness, and the flow variables change discon-
tinuously across it (in the same sense as across a shock wave). Significant
heat transfer at the wall and large Rey are necessary and sufficient condi-
tions for the presence of the boundary shock wave (ref. 10) whether the
efflux is supersonic or subsonic. If the heat transfer is small, the effects
of the boundary shock wave are negligible. If the efflux is supersonic rela-
tive to the surface (Mp > 1), the limiting case of the boundary shock wave as
the heat conduction approaches zero is a simple detached shock wave near the

surface.

The effects of the boundary shock wave did not appear in the analyses of
references 1, 2, 4, 5, and 6. Although the viscous terms were included in
the incompressible form of the Navier-Stokes equations used in reference 1,
the boundary-shock effects would not appear in a purely constant-density
analysis unless discontinuities were allowed in order to account for rapid
variations in density, normal velocity, etc. Similarly, the inviscid-flow
analyses of reference 2 and the appendix of reference 5 contained neither
viscous-compressive effects (effects of Tpp) nor discontinuous flow variables
to account for possible viscous effects at the body. Those analyses also
would not apply to supersonic efflux because, with no heat conduction at the
wall, there would have to be a detached shock wave somewhere between the body
surface and the stagnation point. Boundary-shock effects did not appear in
the boundary-layer analyses of references L4 and 6 because the terms in the
Navier-Stokes equations that can be important very near the surface when the
mass flow normal to the surface is large (terms containing Trr) are omitted
in the boundary-layer eguations used in those analyses. Since the boundary-
shock effects are not important in some cases, the results of the previous
investigations are valid and accurate (under appropriate conditions) even
though account was not taken of a possible boundary shock wave.

It is hoped that the present study will shed some light on the nature of
the division of the flow into inviscid and thin viscous regions. After Jjusti-
fication of the approach used, the flow is analyzed by treating constant-
density inviscid regions with lines of discontinuity to represent thin viscous
regions. (Treating the internal structure of the viscous regions is beyond
the scope of this report, but rigorous derivation of the boundary conditions
for the inviscid regions, based on recognition of the presence of thin viscous
regions, is contained in an appendix.) The analysis includes the effects of
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the boundary shock wave, which makes the flow calculation correct in the
extension to flows with more severe conditions than can be treated correctly
by the previous analyses. The inviscid-flow solution is the same as that in
the appendix of reference 5 except in the application of boundary conditions
at the body surface. That is, the inviscid solution is the same as Cresci
and Libby's if their boundary parameters are the same as values outside a
boundary shock in the present analysis. Thus, one main purpose of this report
is to relate the inviscid solution to appropriate boundary parameters under
the conditions where the boundary shock wave is expected to occur according to
the theory of references 9 and 10. The approach presented here may therefore
be considered to be an extension of the analyses in reference 2 and the
appendix of reference 5 to cases with significant heat conduction at the
boundary surface due to a source of translational nonequilibrium, such as
intense radiation being absorbed there.

DIVISION OF FLOW INTO INVISCID AND THIN VISCOUS REGIONS

The flow of air and of gas emanating from the body is assumed to be
governed by the Navier-Stokes equations. They may be expressed symbolically
as

convective terms = ﬁL . (viscous terms) (1)
e

The convective terms and the viscous terms are made dimensionless with respect
to the appropriate flow quantities in each region of interest so that the
Reynolds number for the general case is

o} v A
Vreﬁ ref ‘ref (2)
Href

Re =

where the reference gquantities in a given region are constant values
representing actual significant flow quantities in that region.

It is well known that, if the Reynolds number is large, the right side of
equation (1) is negligible, and the flow is said to be inviscid, except in
very thin regions where the viscous terms, which contain higher order deriva-
tives of velocities than the convective terms, are large. In the 1limit as
Re — o, it is only in regions for which the thickness is of the order of some
power of (Re)‘l that these viscous terms are important. In the inviscid
limit the thin regions are represented as discontinuities in the flow vari-
ables that are changing rapidly there (the discontinuities being either at a
boundary or at an internal location, where either a boundary condition or
internal continuity of the solution cannot be satisfied because the order of
the differential equation, or system of equations, is reduced). The structure
of the flow inside these "quick-transition regions™ (cf. refs. 11-13) could
be analyzed by making boundary-layer-type transformations on the equations and
making a uniformly valid approximate calculation by dropping out the terms of
higher order in the small parameter (Re)—1.




Consider first the case of no mass transfer (Vi = O) and refer to
figure 1(a), which represents schematically the flow in the forward region of
a blunt body that is axially symmetric with respect to the free-stream direc-
tion. A significant parameter determining both the thickness of the shock
wave, Bgyw, and the boundary-layer thickness, &3, in comparison to the
thickness of the shock layer, 4y, is

p. V. 445
Re2 = _2_2_ (3)
Ha
where subscript 2 dindicates conditions on the axis immediately behind the
shock wave and where p, p, and V are, respectively, the density, viscosity,
and velocity there. As is well known,

6SW -1
ess-d-:=O(Re2 ) (Vo = Vg # 0)

as Re2 - ®© ()'*')

6bz -1/2 a )
€, = O(Re, ™ ) ;% # 9)

in general. Thus, when V = O and Res 1is large, the flow of air in front
of the body (fig. 1(a)) is inviscid except for the thin quick-transition
regions of the shock wave and the boundary layer (shaded areas).

Now consider the cases where mass transfer from the body exists (Vb % 0),
and in particular the regimes of flow for which Res >> 1 and for which

V. .d
Rey = -——————pb b 1> (5)
Hp o

is very small, of order unity, or very large (see fig. 1(b), (c), (d)). The
case of small mass transfer (prb small) is denoted by Rey << 1. The
"intermediate regime" is Rep = O(1l); and the case of large mass transfer is
denoted by Rey >> 1.

From the above discussion we see that Rey 1is the determining factor as
to whether or not the bulk of the flow from the body (i.e., the inner gas
layer) is free of viscous effects. (Note appendix B.) For very small mass
transfer (Rep << 1) the inner gas layer is entirely viscous and is simply
part of the boundary layer (fig. 1(b)). The mass transfer does not change the
order of magnitude of the boundary-layer thickness if Rep < O(WRez). As the
mass flux increases, say to where Rey = 0(1), the inner layer becomes a
thick viscous layer (fig. 1(c)). Mathematically speaking, it is not a bound-
ary layer because it is not vanishingly thin as Rep = «» and the requirements
for the validity of boundary-layer theory are violated, although the viscous
part of the air in the outer layer does become vanishingly thin as Res — o,
As the mass flux increases still further, so that Rep >> 1, the inner gas
layer must become essentially inviscid (fig. 1(d)), leaving viscous effects
confined to the interface layer and the boundary shock wave at the body
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surface. The interface layer is essentially a "blown-off" boundary layer
that has carried with it the viscous-shearing effects (effects of T ) that
characterized the boundary layer (fig. 1(b)). The viscous-compressive effects
(effects of Tpp.) that became of the same order as the viscous shearing
effects in the thick viscous layer (fig. 1(c)) are left confined to the
boundary shock wave (fig. 1(d)). Note that no part of the flow in the bound-
ary shock wave need be supersonic if there is heat transfer in the gas at the
boundary (ref. 9). Furthermore, the boundary shock wave behaves in the same
manner with varying Reyp as does a shock wave with varying Rep (see ref. 9).
Its thickness for large Re, is of order pp/ppVp; that is,
Cpsw = —X = O(Rebl) as Rep = ©
% (6)
with Vg - Vp # O

where the viscosity coefficient i is of the same order as the shear-
viscosity coefficient p. The viscosity coefficients are related by
L 1

ﬁ"'gﬂ'*‘g“ (7)

where &« 1is the bulk viscosity coefficient (see ref. 1k, p. 337). One would
expect the order of magnitude of the relative thickness of the interface
layer, €;, to be given by

& -1z -
€4 E.T%l = O(Rez ) + o(Rebl/g) as Rez —» = and Rep = = (8)

if it can be treated like a boundary layer. However, this should probably not
be assumed a priori without a careful analysis. It would be true if the tan-
gential velocity at the interface is discontinuous in the inviscid solution.

With the assumption that the

Interface Boundary entire outer flow is governed by

Shock wave layer shock wave .
(significant =,,) (significant 7,g) (significant =, ) Rez and the inner flow by Reb,
i el the limiting case for which both

Res and Rep = « will leave two
inviscid regions with possible dis-
continuities at their boundaries:
the shock wave, the interface, and
the body. Whether or not discon-

P tinuities will exist there in the
inviscid 1imit will depend on satis-
faction of the conservation equa-

Inviscid V3
inner flow

. l¢— Thickness of region

Inviscid
freestream

of mass-transfer tions across these vanishingly thin
P process regions, to be considered below.
(e.g.,vaporization}
- - L L i o
r rs " s Sphere Sketch (a) may aid the under-

center

(Lol standing of flow containing a bound-

ary shock wave. Thermodynamic

Sketch (a) pressure, p, and mass density, p,



are plotted qualitatively across the several regions of flow on the axial
streamline when Rep and Rep are both large and when some source of signifi-
cant translational nonequilibrium is present at 1. Note that in measure-
ments of pressure, there would be no way of physically separating the
thermodynamic pressure, p, from the normal viscous stress in the radial direc-
tion, Tpp. For smsll enough pV,,=, the total normal stress in the radial
direction, p + (—Trr), does not vary significantly across the boundary shock,
although the density, p, does if a strong boundary shock is present (i.e.,
with significant Tpp

ASSUMPTIONS AND APPROXiMATIONS FOR FLOW CALCULATION

For the flow calculation it is assumed, first of all, that Re, and Rep
are large enough that both the air flow in the outer layer and the flow
originating from the body are essentially inviscid. It is assumed therefore
that all viscous effects are confined to very thin layers at the shock wave,
the interface, and at the body surface, as described above. These very thin
quick-transition regions are represented by surfaces of discontinuity in the
inviscid analysis. The discontinuous quantities are those that vary rapidly
inside the thin viscous regions, except that the density at the interface is
generally discontinuous also in the viscous flow, if diffusion is neglected.
It 1s assumed that either the interface layer is stable near the axis of
symmetry or the effects of instability are negligible (see appendix B) .

Only the sphere will be considered for the body shape. In order to
obtain a separable solution to the equations, the shock wave and the inter-
face will be assumed to be concentric with the body, and the normal velocity
of mass flow from the body (just outside the boundary shock wave) will vary
as the cosine of the body angle ©¢. These assumptions are automatically
included if we simply assume: (1) the body has constant curvature, and (2)
the flow solution is separable. That is, the latter assumption is equivalent
to specifying all the boundary conditions in such a way as to be compatible
with a separable solution to the equations.

For simplicity, the density is taken to be constant in each of the invis-
cid regions, but it may vary across the surfaces of discontinuity represent-
ing rapid transitions. (The density varies rapidly across the boundary shock,
as well as across the shock wave.) The outer inviscid solution will then be
identical to Lighthill's constant-density solution for the sphere (ref. 3)
(with the interface as the equivalent body in that solution), since the con-
ditions across the shock wave are the same. The solution for the flow between
the interface and the body will be different from those of Vinokur and
Sanders (ref. 2) and Cresci and Libby (ref. 5, appendix), for the same bound-
ary parameters, because of the presence of the boundary shock wave. (For the
same values of parameters outside the boundary shock wave, the inviscid solu-
tion is the same as given in the appendix of reference 5. The relationship
of the inviscid solution to the boundary parameters, under conditions where
the boundary-shock-wave theory applies (ref. 10), is of most concern here.)
The assumptions of constant density outside the boundary shock and the sepa-
rable flow solution simply require that the mass flux from the body, as well
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as the normal velocity outside the boundary shock, be specified as varying as
the cosine of the body angle ¢. These conditions will be evident when the

solution is formulated.

Purely radial velocity of the mass flow out of the body surface will be
assumed. The flow through the boundary shock wave will then be normal to the
surface. In the solution of Vinokur and Sanders (ref. 2) the mass injection
was assumed to be vectored to make the flow irrotational. The vorticity, or
rotationality, of the flow from the body depends simply on the distribution
of the components of velocity at the surface, which can be specified indepen-
dently of the flow problem, since they depend entirely on the injection (or
ablation) process.

The limiting case of very small heat conduction (dcy, = O) in a super-
sonic efflux of gas at the boundary, for which the boundary shock becomes a
detached shock wave (ref. 9), will not be treated here. Thus we assume

Aoy # 0 1f M, > 1.

The mass flux from the body may be either subsonic or supersonic for a
boundary shock wave to occur (see refs. 9 and 10). We do not restrict My
except to require My, # 0, since M, = O would be generally inccmpatible with
the limit Rep = «.

_ A value of unity is assumed for the longitudinal Prandtl number,

Pr = (c /kc, that is, the Prandtl number based on the viscosity coefficient
i that occurs in the purely viscous-compressive stress, Tpp = p(dv/Or), in
the boundary shock wave. With that assumption the simple relationships
developed in reference 9 for the conditions across the boundary shock wave
can be used. Liepmann and his co-workers have pointed out (ref. 15) that
Pr ~ 1 for most real gases.

INVISCID CONSERVATION EQUATIONS AND THE BOUNDARY CONDITIONS
FOR THE INVISCID REGIONS
Inviscid Conservation Equations

For steady inviscid flow the equations of conservation of mass, conserva-
tion of momentum (Euler equations), and conservation of energy are:

div(pV) = 0 (9)
- -
o(V - grad)v + grad p = 0 (10)
o(V - grad)<h + -%— V2> +div ap = O (11)

with which appropriate equations of state and a relation for q must be
used. We take for the equations of state in the inviscid reglons, as
described above,



p~ = constant, (rp, <t <rp +aj)

yo]
]

(12)

o = pt = constant, (rb +d; <r <mp t d)

Equations (9), (10), and (11) may be
written conveniently in axisymmetric
spherical coordinates (r,e) for the
sphere (see sketch (b)).

A transformation that simplifies
both the equations and their solution
(but involves no approximation) is

- the following:

Streamline g = log(r/rb) (l3a)
for which
0 -9
ra—r-()—ag() (13b)

In terms of dimensionless quantities

Sketch (b) u, v, b, p, and k, equation (9) and
the components of (10) become
(&£%8h1@®+(&éisﬂlwg=o (1)
- . _ =
p(uu@ vup + uv) kpcp (15a)
_ 5 -
.+ vve - u=) = -k 15b)
o( o ¢ ) Py (15
With dimensionless enthalpy h, equation (11) becomes
N ~kr div q.
uf +E @ +2v2) +pvfB+fwe vEe?) s T4 (16)
> > > 2 0 V_3
P /; ©0 ¥ 00

In equations (14) to (16), the subscripts ¢ and { denote partial differen-
tiation. (In these equations p is still variable.) The equations of state
for the inviscid regions become

p=p =0 /p" = 0% = constant for 0 < ¢ < ¢y

(17)
F=5p =1 for 3 < ¢ <l{s




where

1

¢; = log(ri/ry) = log(l + dij/r,) =log Dy

(18)

£ log(rg/ry,) = log(l + d/ry) = log D

It is convenient to introduce a dimensioniess Stokes stream function V,
defined by
2g

sin @ ; W@ = —Bvezg sin @ (19)

\Ifg = pue
which automatically satisfies equation (14). Equations (15) may be combined
by using equations (17) and by cross-differentiating and equating D to
D ¢ to obtain a nonlinear partial differential equation for , which applies
for 0 = fe < §{ <{; or for €; <€ < ;- Because constant density is
assumed for the inviscid portions of the flow, the energy equation is
uncoupled from the equations for conservation of mass and momentum and, hence,
need not be considered for the inviscid-flow calculation (except in the con-
ditions across the discontinuities to determine p and p+).

Boundary Conditions

Since the flows on both sides of the shock wave and on both sides of the
interface layer are inviscid, the inviscid-flow equations for the conservation
principles can be used to determine conditions across (cf. appendix C). How-
ever, the boundary shock wave, like a boundary layer, has inviscid flow only
on one side, so the conservation equations of viscous flow must be used to
find conditions across the boundary shock wave. This has been done (refs. 9
and 10) for Pr = 1 and for a plane boundary surface. For a curved boundary
surface and a very thin boundary shock wave (i.e., to first order) with flow
normal to it, the results will be the same. However, the flow quantities will
vary along the boundary shock wave.

The conditions behind the shock are (cf. appendix C):

at § = (g
v = -k cos @ (20a)
u=sin @ (20b)
p= (1 - k)cos2 o (20e)
h=2(1-k2)cos? (204d)

where k = pm/p2 is determined by an equation of state (or equilibrium-air
tables) in combination with equations (20) (using ¢ = 0). It will be



convenient to use (20c) in the following form (making use also of eq. (15a)):

E=¢ , —k§¢ = uug, + vy + uv = #k(1 - k)cos ¢ sin @ (21)

The interface (¢ = gi) is defined as the surface between the region of
gas flow that has come through the shock wave and the region of gas flow
emanating from the body. This definition can be represented by

=28 > v =0 (22a)

which, with the concentric interface (i.e., Ci = constant, not a function of
@), also implies

§=§i, v=20 (22b)
The conditions to be applied at the inviscid interface are (cf. appendix C):

at § = Qi :

v =0 (23a)
5 =p" (23b)
B (uug)™ = 5+(uu<p)+ (23¢c)

At the body (in the inviscid flow, outside the boundary shock wave) it
will be found necessary to specify: p = Bg, V = Vg, U = Ug (where
Pe =P = p/pT =02 = constant) in order fhat the inviscid solution be deter-
mined. (These quantities are equivalent to those "at the body" in the appen-
dix of ref. 5.) When a boundary shock is expected, these quantities must be
related to conditions at the boundary, within the viscous boundary-shock-wave
region. The viscous-flow equations must be used to determine the conditions
across the boundary shock, whose relative thickness (ref. 9) is O(Rep?t).
For the calculation of results, one would like to specify values at the
boundary, say My, Ty, and the mass flux ppVy, then determine the conditions
outside the boundary shock (be, Ve, Ue), which would be used as boundary con-
ditions for the inviscid solution. However, it will be found most convenient
for the calculation to specify values of a parameter N containing peVeoz-
As will be seen, then, Peo Will be determined from the solution to the equa-
tions s0 that Meo® = PeVeo?/7Peo Will be known. If My, = My(¢) and T, are
also specified, then the complete inviscid solution, the conditions across the
boundary shock, and values of quantities of interest at the boundary, includ-
ing the mass flux at @ = 0, (opVp)ys Will be determined. Thus, specifying
My, Tpos and peVeo2 will give solutions corresponding to My, Tyo, and some
value of (pVy)y. It has been shown (refs. 9 and 10) that, for Pr = 1, per-

fect gas in the boundary shock, and q,. = constant across, and for known
values of M, and My, the conditions across the boundary shock wave for flow

normzl to the layer (in present nomenclature) are:
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Vo/Vp = a )
/Py = 1/a (o)
T/Tp = 1 + (1/2)(7 - L)M2(1 - o®) = Py, /M2 ?
p/Pp = a2/ ]
where
oM [1 + (1/2)(r - U2 Y3 25)
My L1+ (1/2) (7 - 1)M3

and the heat-conduction parameter for conduction in the gas at the boundary is

=  Qep 6
Che = (1/2) ppVy,3 2[({1 * TMZ > <l * 7Mb (26)

To these conditions we must add for normal injection,?t

u, = u =0 (27)

In general, the quantities found from the above conditions are variable over
@. The respective variations will be specified as required to produce a
separable solution for the inviscid flow, as discussed above. For a separable
solution it is necessary that v, vary as cos ¢ and ug at most as sin ¢

at {=¢§,=0:

\
=2 cos o

(o]

V=Ve=VeOCOSCp

(28)

U= Uy = Ugp Sin ¢ = O

Once the ratios in equations (24) are known for all ¢ (with specifica-—
tion of My, Tpos and peVeo2 and with p, found from the inviscid solution),
the following quantities can be calculated in order:

In a private communication, Prof. N. Rott (Univ. of Calif. at Los
Angeles) has pointed out that if a significant tangential velocity component
is present in the boundary shock wave, its treatment would be analogous to
the "shock slip" condition for the tangential velocity component in an obligue
shock wave (e.g., see ref. 16). This condition would have to be considered if
the mass injection is "vectored" as suggested in reference 2.



_ pe(9)
p, (@) 5§75;

Tp(9) = Tbo(%) iﬁi) @:o) <S:o>
e 6

Py, (P)
Db(¢) EE;(@Y (29)

]

Veo

0
D
D m<1
o |o
“p
N—
B
N

PVp = PeVe = PeVeo O @ J

Different values of peVeO2 could be specified initially and the solution
iterated until the desired mass flux, p,Vy,, is obtained.

It should be noted that when the mass transfer is a result of ablation
of the body surface caused by high radiative heating from the hot layer of
air between the shock wave and the interface, the specification of arbitrary
values of M, Ty, and pVy, could be replaced by three appropriate equations
similar to those used in references 9 and 10 for the one-dimensional
case: a vaporization-rate equation for M,, Clapeyron's equation (or "modi-
fied Clapeyron's eq.") for Tp = Ty(py), and an equation relating ppVy to
the radiative heat flux. Then the radiation is assumed to be absorbed within
an infinitely thin layer just inside the body surface; some of that heat is
conducted into the body, so the heat conduction into the body from the surface
is not the same as the conduction in the vapor just outside the surface.

SOLUTION OF THE EQUATIONS FOR THE INVISCID REGIONS

Separation of Variables
The partial differential equation for ¥ obtained from equations (15),

(17), and (19) with the boundary conditions (20), (21), (23), and (28) has
the separable solution

12




¥ = sin? @ £(¢) (30)

where the differential equation for f({) is

Fr1Y - 58" 4 2f!' + 8Ff =0 , (O=ge<€<§i or §i<C<§S) (31)
where ( )' =d( )/df. The boundary conditions become:
at § =, =1log D:
£ = kD?/2
£ o= D2 (32)
" = (D?/k)(1 - k + 2k%®)
at § = Ci+ = log D;
£ =0 (33)
at ¢ =¢; = log Dy :
£ =0
_ N (34)
(£1)% = [(£1)3] = <°—+> [(£1)%]
o
at £ =10e =0: -
P Veo -p [Veo __‘Uzveo
fe— =% <?2.> T2
: (35)
' = P Ugp = O

Equation (31) is a third-order linear ordinary differential equation (with
constant coefficients because of the transformation (13); its solution will
have three unknown constants of integration for the region Ci <t < Cs and
three unknown constants of integration for the region O < § < {,. In addi-
tion, {; and (or D; and D) are unknown, making a total of eight unknown
constants to bé evaluated by the eight boundary conditions in equations (32)
through (35).

Equations for Pressure, Velocity, and Vorticity
The boundary conditions not yet used, (20c) and (23b), will determine the
constant of integration for the pressure in each of the two regions. When

equations (19) and (30) are used, equations (15) become
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—kbf)cp = (sin @ cos cp)e“*c[(f')2 - 2ff" + 2ff'] (36a)

KDy = (sin® e 2S[arrt - (£1)2] + (cos® @le2l[herr — 852] (36b)
which may be integrated to obtain

—X5p = (1/2)(sin” ¢)e'4c[(f')2 - 2ff" + 2ff'] + e‘4§(2f2) +C (37)
where the conditions (20c) and (23b) now determine that

P2 -k for t; < §<tg

@]
1

Q
]

(38)

It
Q
I

T =pcCt= 02<% k2 - ‘> for 0 < ¢ < ¢4

Outside the boundary shock wave, conditions (35) in (37) give (for wugy = 0):

2 "
e (0vee) _OVeo T ©)y 5
P =1-5k o = — st ¢ (39)

In terms of the function f(f), the dimensionless velocity components
are:
_sin @ £'(¢) )

- =t

(¥0)

-2 cos @ £(t)
e28

and the dimensionless vorticity is R

1V
W E<£E—E$£——— = e_g(vcp -u - ug)
" (31)

_ Sin CP | i
=5t (2f + £ ")
pe

1k



Integration of the Differential Equation
and Calculation of Results

The solution to equation (31) may be written

£(0) = £4(0) = ot (E0) 4 r2(Ete) c;e—@-éi)
= ci(x/rs)* + cf(r/ry)? + ca(r/ri)™? $ (42a)
(b1 <t <ty)
and N
£(1) = £(0) = oz (), 220D so(6E)
- o3(e/r)* + eI(e/r1)? + eg(x/r) ) (12b)
(0 <¢< ¢1)

+ - - -
The constants c,, c;, c;, C1» Cos Cgs D, and Di are evaluated by substi-
tuting conditions (32) through (35) into the solution (42). The results are

et (1-x)7 et oy 1 e (1 -x)(1-6x)T°
d- o ZeRoL, Z.iFO (43)
D  10kxD D3 6k D3 15k
where
r, +d r
p=P _b " " _°8 (Lh)
Di py +a; Ti
1s the appropriate root of
2 =2 =5
3(1 - k)T +5(kk - 1)D° +2(1 - x)(1L - 6k)D” =0 (45)
Also obtained are: N
co ou Ds=e
o <Di5 +2D;% - 3 —= Diz) :
Bo B 2B
C— ou . D.2
2 5 €0 _ o i >
= =(-D.° - 4 + D. L6
Bo < i Bt ) 2B (16)
- g N D'2
Ss - —2D;® + b + 2 Z5e0 Df) i
Bo B 2B )
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where D;i 1is the appropriate root of

A(Dy) _
- o0 0 (47)
and where
_ ey [x PeVeo
@ =p/p =7 = B, = kog/p, (49)
o pa 22 G ol )
sin @ sin @
-4 - ) P
5 _
- l;k [6(1 %zk) +5(kk - 1) - D3(1 - k)(1 - 6k)]
J
and
A(Dy) = [3 - 2(Uueo/B)]Di5 - 5Di3 - (Gueo/B)Diz + 2 + 3(ougo/B) (51)
B(D;) = D;° + 5D;% - 6 ' (52)

For small di/rp (Di ~ 1), equation (47) may be expanded (for ug, = O) as:

v- gl (b) () (53)

and the inverse expansion, conveniently used for evaluating di/rb for given
small N, is

Loy-2m@+d -+ L. (ueo = 0) (54)

dj
Tb 3 9

It is partlcularly useful to note that f+(§)/D 2 depends only on k
(since c,%/Ds2, c, /D 2, and czt/Di2 are functions of k and D, and

= D(k)), so that (l/Dl and its derivatives can be calculated versus ¢
independently of the solutlon for O < ¢ < t;. Similarly, £ ({)/Bc depends

16



only on the parameter N = oveO/B for ugy, =0 (since cl‘/Bc, cz‘/BG, and
cg~/Bo are functions only of Dji for ugo = O, and Dj = Di(N) for ug, = O)

and can be computed independently of the solution for §; < § < fg.

Another result of special interest here is that, for a given flight con-
dition (given Va, 0O, D), for which k and B are known, £"({ = 0)/o is
known so that De (ed. (39)) depends only on ovgy, or on N (eq. (48));
hence, ﬁe can be found for given N regardless of the value of either o or
Veo+ Then the conditions across the boundary shock wave can be worked out in
the manner outlined in the section "Boundary Conditions," by specifying values
of My, Tpo, and peVeO2 or N. (See egs. (24) through (29).) Equivalently
(and often more conveniently) one could specify different values of Dy
(rather than N), for which N is easily calculated from equation (47).

DISCUSSION OF RESULTS

The ratio of the width of the outer inviscid region to the radius of the
interface, shown in figure 2(a), is identical to that given by Vinokur and
Sanders (ref. 2) and by Cresci and Libby (ref. 5); values of that ratio are
also identical to the values given by Lighthill's solution (ref. 3) for the
ratio of the shock standoff distance to the body radius for the same values
of k =g /p, in the case of no mass injection. Shown in figure 2(b) is the
ratio of the thickness of the inner inviscid region to the body radius versus
the parameter N = oveo/B. Note that this "inviscid blowing parameter" N
is based on conditions outside the boundary shock wave, and not on conditions
immediately adjacent to the body surface when a boundary shock is present.

The dimensionless tangential velocity on either side of the interface
(ui+ or u;”) can be found from the function B plotted versus k = pw/pz in
figure 3. This function B is identical to the dimensionless stagnation-
point velocity gradient from Lighthill's solution.

Figure 4 shows examples of the tangential-velocity profile for the
particular cases for which k = 0.06 and di/rb = 0.3. Note that the func-
tion plotted in figure 4(a) is continuous at the interface, but that the
velocity itself is discontinuous if p~/p? is not unity (see fig. 4(b), in
which o= /pt = 2).

The remaining calculations, for quantities at or near the body surface
(figs. 5 to 11), were all made for V_ = 20.83 km/sec, altitude = 60 km (for
which k = 0.06554 and B = 0.4190). The ratio of specific heats in the gas
emanating from the body was taken to be 7 = 7/5. To illustrate the variation
of quantities along the boundary shock wave (i.e., with varying o) in fig-
ures 5, 6, and 7, the particular value 0.025 was arbitrarily chosen for the
parameter N. Figure 5 shows the variation of Pes peVeZ, and Mo+ Note that
these variations correspond to the assumed cosine distribution for the veloc-
ity outside the boundary shock wave. For figures 6 and 7 it was also neces-
sary to choose a value for M,. For these calculations, M, = 1/3 was
arbitrarily chosen. The values for Ty @and the molecular weight m need
not be specified for these results.

17



For the same flight condition (V. = 20.83 km/sec, altitude = 60 km), the
values of various quantities of interest relating to the boundary shock wave
in the gas on the axis at or very near the body surface are shown plotted
versus the inviscid blowing parameter N (for ¥ = 7/5 in the inner region) in
figures 8 through 11. One need not specify either My, Tpo, Or m in fig-
ure 8, but calculating the ratios across the boundary shock, conditions at
the body surface, and certain conditions outside the boundary shock wave
requires that My be specified (figs. 9 to 11). It is pertinent to note
again (as in the discussion of sketch (a)) regarding the pressure variation
across the boundary shock, that a measured pressure normal to the r direc-
tion would be the total normal stress, p + (-Typ), rather than the purely
thermodynamic pressure p. Note also that the heat conduction parameter Chc
(fig. 10(a)) expresses the heat conduction in the gas at the boundary; its
relationship to the heat conduction inside the body surface depends on the
mechanism of the mass transfer (refer to refs. 9 and 10). TFor all the
quantities plotted in these figures, neither Ty hor m need be specified.
Worthy of particular notice is the result shown in figure 10(d), the relation-
ship between the mass flux (prb)o and the parameter N referred to in above
discussion.

If one makes the approximation

P, - P 1Y
==~ = (55)
PooVoo PooVoo

Pe

one can plot the results given in figures 5 through 11 in more general form.
Then, the solution for appropriate dimensionless quantities would depend only
on Kk, rather than on the entire flight condition with specified altitude and
flight velocity. For example, with the flight condition used in figure 5, for
which p V 2 = 1.533x10% dynes/cm?,

peVe2 pevezA )
> = 1533 *—ﬁ
10° dynes/cm Poo 00

) (56)

and
P

.
S 1.533< = )
10° dynes/cm® WA

so that, with the approximation (55), the values on the three curves on fig-
ure 5 are equivalent, respectively, to the two quantities on the right sides
of equations (56) and Mg for just k = 0.06554, N = 0.025, and 7 = 7/5.
Similarly (with use of the approximation (55) and with the flight condition
(altitude and velocity) replaced by k = 0.0655k), the results of figure 6
apply directly, and those on figure 7 for Chc/lOO and Tb/Tbo apply directly,

whereas the values on the curve labeled 20 gm/mole o> %o 3 become
m 1°K/ \1 gm/cm

18
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results of figures 7 to 11 can be worked out for the more general condition
in a similar manner (w1th e.g., the quantities Mg, Pe/Pb: pe/pb, T /Tb,

Chc applying directly). Of special interest is a further result, plotted in
figure 12: +the dimensionless heat-conduction flux in the gas at the body
versus another "blowing parameter,” based on conditions at the boundary,

/2
_ PboVbo *
r= (o) or

showing values on various lines of constant N or lines of constant M. For
given N and M,, the blowing parameter is calculated from

oV, # 2
bbo . <_S__E> <p B N (58)
poovoo © oo 00

and the dimensionless heat conduction is foundAin the form

2\1/ Qe
(V) —2 ) = y¥2y F(cn,), (59)

Obviously, the variation of the heat transfer with the blowing parameter
depends on the simultaneous variation of Mp. For example, if My remained

constant as F increased (where M, =. oV, 2(F/7py,)), then

(VMZ/RTbO)1/2[—qu/(l/2)pme3] would decrease. As pointed out above (para-

graph following egs. (29)), the complete determination depends on other con-
ditions of the problem, including the mechanism of the mass transfer.

In discussing the above results it must be recognized that the boundary-
shock-wave theory, and the inviscid-flow solution, are only wvalid asymptoti-
cally as Rep — . Hence, for sufficiently small N or F, the results given
here are not valid. As N and F approach zero, the inner flow becomes fully
viscous and then approaches a boundary-layer-type flow, so that, in the limit,
the ratio p /pb must go to unity; the heat conduction becomes the usual
convective heat transfer of boundary-layer theory; the normal viscous stress
becomes insignificant in comparison to the thermodynamic pressure p; and the
viscous shear, Trgs becomes significant. (However, even a value of N equal
to 0.02 or 0.01 can correspond to a substantially high value of Reb-) As an
example, if for sufficiently large N a constant value of M, were appro-
priate as N varies (e.g., Mp ~'l/3, as estimated in refs. 9 and 10), then
as N —» O, the variation of p /Pb would be expected to follow a curve such
as the qualltatlve dashed curve sketched on figure 9(a). Similarly, the value
of Che in figure 10(a) would first approach a curve of variation appropriate
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to "moderately large" values of mass flux, and eventually to that appropriate
to boundary-layer theory as N and Rep approach zero.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, California 94035, Aug. 9, 1967
124-07-02-23-00-21

20



C

Chc
CpsCy
Ca1s5C2,C3

D

ol

ol

APPENDIX A

PRINCIPAL NOTATION

constant of integration in pressure; evaluated in equation (38)
heat-conduction parameter, equation (26)

specific heats at constant pressure and constant volume,
respectively

constants of integration; evaluated in equations (43) and (46)

ds rs
rp T
do + dl

thickness of the layer of gas emanating from the body

thickness of the layer of air between the shock wave and the
interface

<pbovbo%>l/2
PoVos

function of ¢ in the stream function, equation (30)

specific enthalpy

h - hg
V2
(s}
pOO
shock density ratio, Er
2

coefficient of thermal conductivity

v
speed of sound

Mach number,
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Qal

Reb

Re,

Hi

22

molecular weight

2. 1/2
Veo _ (k. P eVeo>
2
P p pooVoo2

ﬁcp
- (Prandtl number based on )
c

thermodynamic pressure
b-bp
—
2
pOOVOO
magnitude of heat flux

heat flux vector
gas constant, <%> times universal gas constant

Vi d.s
(?bif—%> ,» Reynolds number

o
pP_V_dgo
—2 2 ° | Reynolds number
Ha

distance from the sphere center
L

Ty

temperature

dimensionless tangential velocity, %; X tangential velocity
(e o]

magnitude of velocity
velocity vector

dimensionless radial velocity, éL X radial velocity

[}

magnified independent variable in thin region; product of { and
reciprocal of some small dimension, depending on the region; see
appendix C

%E (egs. (24) and (25))
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€b1

€bsw

function of k (eas. (50)); equivalent to stagnation-point
velocity gradient in Lighthill solution
Cp
ratio of specific heats, = in the gas from the body
v

boundary-layer thickness
thickness of the boundary shock wave
thickness of the interface layer

thickness of the detached shock wave in the air

“bi , equations (4)
do

6]
bSW | equation (6)

, equation (8)

—— , equations (4)

dimensionless independent variable, equation (13a)
bulk viscosity coefficient

shear viscosity coefficient

@u + (L) (ean ()

mass density

o

p2
R
pt Pg

respectively viscous-shear stress and viscous-compressive stress
in the radial direction

angle between a radial line through a point in the flow and the
body-free-stream axis

dimensionless Stokes stream function, defined by equations (19)

dimensionless vorticity, equation (41)
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2L

Subscripts
value Jjust outside the body surface
heat conduction
value just outside the boundary shock wave
value outside the boundary shock at ¢ =0
value at the interface
value at ¢ =0
radiative heat transfer (except in Tpgp and Tpp)
value behind the shock wave
partial derivative with respect to (
partial derivative with respect to ¢ (except in Trw)
value behind the shock wave at ¢ =0

value in the free stream

Superscripts

value in the outer air layer, between the interface and the shock wave

value in the inner gas layer, between the boundary shock wave and the

interface
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APPENDIX B

ON THE POSSIBILITY OF STANDING EDDIES OR AN UNSTABLE

INTERFACE LAYER

We may consider the possibility of regions internal to the flow whose
essential character is not governed by either Re, or Rep- (See appendix A
for notation.) The steady flow immediately behind the shock wave is certainly
governed by Re, and that adjacent to the body is certainly governed by Rep-
But suppose there is some factor at the interface not accounted for that would
allow one or more regions (standing eddies) of dimension, say, 1*, to develop
in which typical values of p, V, and p are p¥*, V¥, and p*¥. Then a Reynolds
nunber

pXV* 1%

(B1)
p.*

Re¥ =

could actually be the governing parameter in that region; and if, for example,
Re¥ were of order unity, then there would be a region of viscous flow not of
vanishing thickness as Rep and Re, » ». Such an event is considered to be
unlikely, and is simply assumed not to occur when the flow calculation is
made in the text of the report.

There is another related possibility that can be eliminated only after
careful consideration: instability of the interface and the formation of
eddies. The interface between the air and the gas flowing from the body is a
contact surface of discontinuity. In the inviscid 1imit, in the general case,
the tangential velocity is discontinuous (shown in appendix C) and the inter-
face layer is a "vortex sheet." According to Rouse (ref. 17, p. 303): "Since
the time of Helmholtz it has been understood that a vortex sheet is inherently
unstable and will degenerate into a series of vorticity concentrations if the
slightest disturbance is present." Prandtl (ref. 18, pp. 50-53) discussed sev-
eral examples of surfaces of discontinuity, all of which break up into eddies.
In Prandtl's words: "Owing to fluctuations in the flow the surface of separa-
tion may take on a slightly wavy form . . . . The waves advance with a veloc-
ity which is equal to the mean of the two velocities . " Such a surface
of discontinuity then ". . breaks down into separate eddies" (ref. 18,
pp. 50, 51). Prandtl described further the mechanism of the instability.
According to Prandtl's descriptions one might expect the interface (for both
Res and Rep very large) to look like the purely hypothetical case depicted
in sketch (c). Perhaps some physical reasoning can be added that will help
to explain the development into eddies in the other examples and will also
bring out a contrasting situation in the present problem. In all the examples
discussed by Prandtl and in all others (at least in subsonic flow) known to
the present writer, the pressure in the region where a contact surface is
breaking up into eddies is always increasing with streamwise distance. When
a contact surface of discontinuity is formed in the flow over a sharp edge,
the breakup (instability) appears to begin at the point where one would expect
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the pressure to begin increasing
(where the streamlines begin diverg-

Shock wave
ing?l). Hence the contact surface is
unstable in an "adverse pressure
Hypothetical gradient." The contact surface of
unstable interface discontinuity is really a very thin

viscous layer, like a boundary
layer, between two flows at high
Reynolds number. A boundary layer
tends to separate from its boundary
in the presence of an adverse pres-
sure gradient (see discussions by
Schlichting, ref. 19, pp. 23 and
26-32, and Prandtl, ref. 18, p. 137),
which i1s always associated with the
formation of vortices (ref. 19,

p. 23). Since the "internal bound-
ary layer" at the surface of "dis-
continuity" does not have a wall to
separate from in the presence of the
adverse pressure gradient, the vorticity concentrations tend to separate from
each other and so to form eddies in the same way as a separating boundary
layer does. Thus it is conJjectured that the same phenomenon causes the insta-
bility and collapse of a contact surface that causes separation of a boundary
layer, which only occurs in the presence of an adverse pressure gradient. It
is further conjectured, then, that the Helwholtz instability and eddy forma-
tion may not occur at a contact surface in the presence of a favorable pres-
sure gradient. In the present problem, the streamlines are known to be
converging and the pressure decreasing. Therefore the eddy formation and
collapse of the contact surface are not expected to occur in this problem,
especially near the axis of symmetry.

Body surface

Sketeh (c).~ Hypothetical unstable
interface.

Since it has not been proved here that the instability will not occur,
some further remarks may be made. First, it is known that the tendency toward
instability and eddy formation is greater the higher the Reynolds number.
Hence, the Reynolds number Rep may be large enough that asymptotic solutions
for high Rep are useful, but Repy may not be too large to prevent viscous
damping of disturbances in the flow pattern that would initiate the eddy for-
mation (c¢f. ref. 17, p. 303). That is, the viscous interface layer may be
thick enough that an unstable "discontinuity configuration" of the flow is not
too closely approached.

Second, even if Rep 1s very large and if the instability and eddy-
formation condition can develop in spite of the above conjectures, the region
in which the eddies occur may be thin enough not to influence the inviscid
flow significantly, but merely to influence the structure of the viscous
interface layer, at least in the region of interest near the axis of symmetry.

lFrom conservation of mass, one finds diverging streamlines to have
decreasing velocity and, hence, from Bernoulli's equation, increasing
pressure.
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Third, if the fluid densities in the two inviscid regions are the same,
then there is no discontinuity in the inviscid velocities and hence no
likelihood of an unstable interface.
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APPENDIX C

DERIVATION OF INVISCID SHOCK-WAVE AND INTERFACE

BOUNDARY CONDITIONS

The main purpose of this appendix is to show a consistent and rigorous
derivation of the conditions applying across the interface layer. Because of
the convenience of the direct analogy to a similar derivation of conditions
across the shock wave, the formal derivation of conditions across the shock

is shown first.

To derive the conditions across the shock wave and the interface, con-
sider the shock to have relative thickness ¢€g and the interface layer to
have relative thickness €5 = €i+ +oeq”. (See appendix A for notation.)
These thin gquick-transition regions are parallel to constant € lines; that
is, the flow quantities vary rapidly over . For the shock wave define
Z = t/es so that AZ = 0(1) across the shock wave. Assume d,. is constant
across the shock wave (i.e., no significant radiation is absorbed or emitted
within the shock). Then the Navier-Stokes equations for the flow through the
shock are (ecf. egs. (14), (15), and (16)):

_ )
(ov), + O(eg) =0
Pvug + O(eg) + viscous terms = O
(c1)
pvv, + kp, + 0(eg) + viscous terms = O
B +% w2 +Z+v2) +0(ey) + viscous terms = O
2 2 7, =

from which we see that, in the inviscid limit (eg — O; viscous terms = O on

both sides),
S\

pv = constant

u = constant
P across the shock (c2)

constant

(pv)v + kp

5V<£ + % u? + % v%)

that is, the inviscid conservation equations are satisfied across the dis-
continuity representing the gquick transition region only if eqguations (C2) are

I

constantJ
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satisfied. These well-known conditions across a shock wave give the
conditions behind the shock as equations (20) in the text of the report.

The interface ({ = {;) is defined as the surface between the region of
gas flow that has come through the shock wave and the region of gas flow
emanating from the body. (See egs. (22) in the text.) The conditions across
the interface can be derived in a manner analogous to that used for the shock
wave. Let €;F be the relative thickness of the air part of the interface
layer ({ > ¢3) and €3~ be the relative thickness of the part in § < §;-.
Now let Z = (¢ - §1)7€i+ for ¢t >¢; and Z= (¢ - Qi)/ei“ for ¢ < &y,
so that AZ = 0(1) across the interface layer. It can be shown that, in the
analogy with the boundary layer, if u varies rapidly across the interface
layer, then v = O(ej) = €;W inside the viscous layer, vhere ¢
€ = €57 = 0(Re,)" Y2 for ¢ >¢; and where €5 = € = O(Reb)_l/z for

§ < g5+ Assuming a} is constant across the interface layer, we can
represent the Navier-Stokes equations (cf. again egs. (14), (15), and (16))
as:

(Pu sin 9)g + (AW sin @)y + O(ey”) + 0(e;*) =0 (C3a)

E(uucp + Wug) + k§¢ +0(e;7) + O(ei+) + viscous terms = O (C3b)

Kby + 0(e;™) + 0(ey®) + viscous terms = O (C3e)

5[}(? + % u%) + W<? + % u?)é] + O(ei‘) + O(ei+) + viscous terms = O (c3d)
¢

+

In the inviscid limit (e;” = 0, €;” = O, viscous terms - O on both sides of

i
the interface), equations (C3a) and (C3d) give no information about conditions
across the discontinuity. Equation (C3a) is automatically satisfied, since
mass does not cross the interface. Equation (C3d) simply says that

h + (1/2)u® 1is constant along the inviscid streamlines immediately adjacent
to both sides of the interface. Equations (C3c) and (C3b) show, respectively,
that the inviscid momentum equations are satisfied across the discontinuity
representing the interface layer only if

P constant across the inviscid interface discontinuity

B(uu@ + vug) + kﬁw O on each side of the inviscid interface discontinuity

(Cha)

Since p is continuous across, from the first equation, and v = O on both
sides (eq. (22b)), the second equation requires

puug, = continuous across the inviscid interface (Chop)

The conditions to be applied at the inviscid interface are therefore
equations (23) in the text of the report.
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